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II On a Theory of the Second Order Longitudinal Spherical Aberration for
a Symmetrical Optical System.

By T. Y. BAkER, B.A., Instructor Commander, R.N., and L. N. G. Firon, M.A.,
D.Se., F.R.S., Goldsmid Professor of Applied Mathematics and Mechanics n
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=0 § 1. Statement of the Problem and Historical References.
= wv

Ir we consider a pencil of rays issuing from a point on the axis of a symmetrical
optical system (i.e., a system of refracting spherical surfaces, the centres of which lie
on a straight line called the axis of the system), it is well known that, if the pencil
be a thin one, of which the mean ray is along the axis, the first approximation to the
emergent pencil is another punctual pencil, of which the rays pass through an image
point, also situated on the axis. The general method of treatment of such image
points, which are usually referred to as “ geometrical” images, is due to GAUSS, and is
developed in any text book of Geometrical Optics.

When, however, the pencil considered is one of finite aperture, the outlying rays
do not, after emergence, pass through the Gaussian image point, nor do they have the
inclination assigned to them by the Gaussian calculation. The emergent rays lying
in any one axial plane touch an envelope or caustic, which has one cusp at the Gaussian
image, with the axis as proper tangent. The intercepts of any given emergent ray
upon the axis and the image plane, measured from the Gaussian image, are known as
the longitudinal and transverse spherical aberrations of that ray.

It is clear that if both these spherical aberrations, or either of them together with
the inclination of the ray on emergence, be known for every possible position of object
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;5 S and 1mage, and for every possible inclination of the incident ray, the whole complex
O H of emergent rays lying in axial planes can be mapped out. The calculation of these
= aberrations is therefore of fundamental importance in plactlcal optical d681g11 where
=i we do not deal with infinitely thin pencils.

E 8 The method employed hitherto for dealing with aberrations from the mathematical

standpoint has been to develop the sines occurring in the refraction equations at each
spherical surface in ascending power of some argument, which may be either the
circular measure, or the sine, or the tangent, of one of the angles coneerned, and to
calculate, by the usual methods of successive approximation, the required aberrations
as a series of ascending powers of such argument.
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30 MR. T. Y. BAKER AND PROF. L. N. G. FILON: LONGITUDINAL

When this is done it is found that the terms due to the first power of the argument
lead to the Gaussian image point, so that the series begin with a term involving the
second power of the argument in the case of the longitudinal aberration, and the
third power in the case of the transverse aberration. These terms are the first order.
The following terms next in sequence, which are of fourth and fifth power respectively,
are spoken of as aberrations of the second order, and so on.

A considerable amount of theoretical work has been done on aberrations of the
first order by SEIDEL, ABBE and others, and the treatment of these is fairly well
known. Unfortunately, it is found in practice that the first order aberrations do not
give a sufficient approximation for the optician’s requirements. In fact for a certain
range of object and image positions, they are so badly out that they cannot be
said to constitute an approximation at all. This fact has long been recognised by
optical designers, whose practice is invariably to calculate, using the exact trigono-
metrical equations which involve no approximation at all, the correct paths of a
number of selected rays, from which they draw conclusions as to the efficiency, or
otherwise, of the proposed system from the practical point of view.

The trigonometrical method, however, from the designer’s point of view, has the
radical defect that, while it gives partial information about the performance of a given
system, it gives no direct intimation of the direction in which the elimination of various
defects is to be looked for, and it entails a long and laborious process of seeking for
the optimum by trial and error.

The object of the authors of the present paper has been to develop a method of
expressing the aberrations, which, while carrying the algebraic development to a
stage including the second order, should be free from certain grave troubles involved
by failure of convergency, troubles which appear to have been hitherto neglected.
In fact this method gives numerical results that, for a single lens, are considerably
more accurate than the ordinary second order formule. Further, these methods
enable one to deal, in a comparatively easier form, with the problem of the second order
aberrations of combinations of surfaces and systems, a problem which, so far as we
know, has never been attacked from any general standpoint. Korxic and Vox RoHr
(Vox Romnr, ‘Theorie der Optischen Instrumente,” Cap. V.) give a development of a
formula for the coefficients of first order and second order in the longitudinal spherical
aberration, based on ABBE'S method of Invariants, but so far as can be seen, no definite
results are obtained for the second order terms.

Denvis TAvror (‘System of Applied Optics, p. 67) gives a formula for the
spherical aberration, developed in powers of the intercept made by the ray on the
first principal plane, which includes terms of second order. But his formula, a
particular case of those dealt with in the present paper, is limited to the thin lens,
and no attempt seems to be made at anything like a general treatment of such
aberrations. ’

Another important object of the method to be described is to express the
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SPHERICAL ABERRATION FOR A SYMMETRICAL OPTICAL SYSTEM. 31

aberrations in such a form that, in a combination of surfaces and lenses, the effect of
a given surface or lens on the final result can be readily traced. This is fundamental
for the designer, who usually proceeds to sketch out his system by Gaussian methods
only, being guided therein by considerations of magnification, illumination, and field
of view; and then goes on to eliminate the resulting image defects, so far as he can,
by bending the lenses, #.e., by altering their mean curvature without changing the
focal length. 1In doing this he usually corrects one defect at a time, with the frequent
result that, when, having corrected one defect by means of one lens, he proceeds to
correct a second defect, he thereby causes the reappearance of the first.

If the effects of any given lens, however, are made apparent in the final formula, it
becomes a more manageable problem to devise variations which will keep any one
defect snvariant whilst others are being dealt with.

§2. Notation.

There is no general agreement among mathematical writers as to the notation
employed in dealing with optical problems, and it will be convenient to state here
the symbols we have adopted. They are a modification of a system “due to
STEINHEIL.

The successive media, proceeding in the direction of travel of the light (from left to
right in our figures), are denoted by even suffixes 0, 2, 4, &c., and the same suffixes
affect the rays in these media, their inclinations, a,, a,, a,, &c., to the axis, and their
intersections I, I,, I,, &c., with that axis.

The successive geometrical images will be denoted by the letter J, thus J,, J,, J,, &e.
The successive surfaces of separation will be denoted by the odd suffixes 1, 3, 5, &e.,”
and the same suffixes will affect the centres of curvature, the intersections of rays
with the surfaces, and the points where the axis crosses the surfaces. The latter
will be denoted by the letter A and the centres of curvature by the letter C.

Fig. 1 illustrates the use of this notation for two refracting surfaces.

The radii of curvature are 7, s, 75, &c., and are to be considered positive when
A,, +1 Cany1 1s measured from left to right.

The perpendicular from a centre of curvature on a ray is denoted by p and 1s
affected by a double suffix, the first belonging to the centre of the curvature and the
second to the ray. Thus p,, is the perpendicular from the centre of curvature C, of
the first reflecting surface upon the ray in the second medium. Where there is no
ambiguity the first suflix will usually be omitted.

The refractive index will be denoted by #» and affected by the suffix of its
medium.

Transverse magnifications will be denoted by M. The magnification produced by
surface 1 will be denoted, as convenient, by M, or My, ; by surfaces 1, 3 combined
either by M,; or My, : by surfaces 1, 3, 5, combined either by M, or My, and so on.

F2
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The advantage of the double even suffix notation in this case is that we have a symbol,
M,,, for the magnification when light passes backwards through the system, the order
of the suffixes being material. Where odd suffixes are used, we have to use 1/M,,
1/M,;, &ec., for the reversed magnifications.

Ray magnifications will be denoted by M. These are the limit of the sine-ratio for

small inclinations, thus M, = M, = L sin a,fsin @, M = M when the initial and final
. : —>-0
media are the same. K

With regard to inclinations, they will be treated as positive when the rays converge
to the axis, as in fig. 1. The inclinations of the rays calculated by GaAuss’ process
will be denoted by 8. Thus 8, = a,, tan 8, = tan «/M,, tan 8, = tan «,/M,, &c.

Fig. 1.

We may also use angles 7, calculated from a constant sine ratio, viz., y, = a,,
sin vy, = sin ay/My, sin y, = sin a,/M,,, &c.

Throughout much of the work we shall use the same trigonometrical functmn
(tangent or sine) of the angles «. If the tangent is used, we shall employ the following

abbreviations :(—
- @y, = tan a,, ly, = tan By,.

If the sine is used, the meaning of g, ¢ will be as follows :—
Qon = SIN ay, lo, = SIN Yy,

It will be found that many formulse remain unaltered, Whlchever of the two inter-
pretations for ¢ and ¢ is used.
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SPHERICAL ABERRATION FOR A SYMMETRICAL OPTICAL SYSTEM. 33

All distances parallel to the axis will be denoted by @« (the attribution of the
symbol being indicated in each case) and will be measured positively from left to
right.

The longitudinal aberration WIH be denoted by Az, with the suffix of the medium,
and will be reckoned positive when the point of intersection of the ray with the axis
1s to the right of the geometrical image. Thus Aw, = J,I,. This is opposite to the
usual convention which is based on the fact that for positive or convergent lenses, I, is
generally to the left of J,, ; but, in the first place, this is not universally true, and, in
the second place, the convention adopted by us was found more convenient in handling
the algebra.

It 18 to be noted that, with the notation used, the well-known formula for a lens

Ll yecomesi-l= l, the distances u and v being measured in the same
w v f v ou f
direction.

The distances between successive refracting surfaces we denote by ¢, with the suffix
of the medium.

In dealing with a system, especially where the initial and final media are not the
same, 1t is very convenient to use an “equivalent” Gaussian system, in which lengths
parallel to the axis are measured in each medium in terms of a unit proportional to its
absolute refractive index.

If we denote the corresponding points in the equivalent Gaussian system by accents,
we find that ‘

AllJl0 = él_J_O , Allle — ,‘LJZ , A'IA':; =, = __Qé,
My "y 1y
wg =2 ay o A g
4

If then we denote the quantities 22— =" g by

b 3 1 .fa

the focal lengths of the successive refracting surfaces. The equations connecting

3 S fs - may be called

image and object in the equivalent Gaussian system are

1 1 1

AL, AV T

which is of the same form as the equation connecting image and object for a thin lens
at A'.. '

Now bearing in mind that A, J = A J,—A,A, and therefore A’,J', = A\ J,—A’ A/,
it is easy to show that the effects of the successive refracting surfaces in the actual
system can be obtained by compounding a corresponding set of thin lenses in the
equivalent (Gaussian system. By dealing with the latter, we get rid of the
asymmetry introduced by the difference of initial and final index. Of course this
applies only to the calculation of the geometrical images. ~We note that in the
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equivalent Gaussian system the ray and transverse magnifications are identical and
agree with the transverse magnifications in the actual system.

Finally the intercept of the incident ray on the leading principal plane of a system
will usually be denoted by y. This is taken by some authors as the argument of the
development in series, but differs only by a factor from tan «, or tan g,

In many cases it will be convenient, in order to avoid unnecessarily large
suffixes, to condense a system of surfaces or lenses, affecting quantities referring to
the system itself with suffix 1, and the initial and final media with suffixes 0 and 2,
the paths in the intermediate media not being explicitly considered.

§ 3. Sengularities and Convergency.

Consider any symmetrical optical system, of which PL and QM (fig. 2) are the
initial and final refracting surfaces. Let F, be the front focus of the system and
UF,V the caustic for backward-travelling rays which are parallel in the final medium.

Fig. 2.

This caustic, .as is well known, will usually be of the type shown in fig. 2,
approximating to a semi-cubical parabola with a cusp at F,, and, to fix ideas, we shall
suppose the point of the cusp to be turned to the left. In the opposite case, an
obvious modification of the argument will be found to lead to similar conclusions.
~ Any ray in the initial medium, which touches this caustic, must emerge parallel to
the axis after passing through the system.

Let T, be an object point on the axis behind F, and sufficiently near to it for a real
tangent to be drawn from I, to the caustic and yet go through the system. This
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will involve for I, a positive ray magnification M exceeding some definite finste limit.
The Gaussian image point J, will then lie a finite distance in front of F.

Consider first a nearly paraxial incident ray I,P. Such a ray will be refracted
approximately according to the Gaussian law and will emerge at an inclination as,,
where a, is nearly equal to /M and both «, and M being finite and positive, a; is
also finite and positive. The ray emerges as QR, passing through a point I, finitely
different from J,. '

As o, increases, a, at first increases with it, but as «, reaches the value A,
corresponding to the inclination of the ray I,Li which touches the front focus caustic,
ay 18 again zero. Hence between those two values a, has at least one maximum, and
for a given value of a, there are at least two values of a,.

Thus, within the range of values which are of practical importance, a, is a many-
valued function of a, having one or more branch-points, of which the one of least
modulus corresponds to the first maximum of a,.

Now, within the same range of values, all the aberrations must be given as single
valued functions of a,, since clearly there can only be one physical emergent ray,
corresponding to one given physical incident ray. This statement, as we shall see,
needs to be qualified when we are dealing with purely geometrical rays, but this need
not affect the present stage of the discussion.

In consequence, if any aberration be expressed in terms of a;—or of any trigono-
metrical function of a,—that aberration must, in general, be a many-valued function
of a,, having for its branch-point of least modulus the first maximum value of a,
mentioned above. It follows by a well-known result in theory of functions, that
no TAYLOR'S series in a, or in sin a, or tan a, can be valid for values of a,
exceeding this modulus numerically. For such values the series will be definitely
divergent. ' v ‘

It is interesting to consider what happens when I, is on the other side of F,, so
that we are dealing with a large negative magnification. In this case no real
tangent can be drawn from I, to the front focus caustic and the value of a, for
which @, =0, is a pure imaginary. But here again, although we are now dealing
with imaginary values, we get two values of «, for a given (pure imaginary) value
of a, and, although no such maximum of &, occurs in the purely real values, the
modulus of the imaginary branch-point limits the validity of TAYLOR'S series in a, as
before.

Thus there exists always a certain range, extending a finite distance (depending
on the nature of the optical system) on either side of the front focus, within which
no development of any aberration in powers of a, or of its trigonometrical functions -
(or, indeed, by similar reasoning, of any inclination of the ray, except in the
original medium) is. valid for the whole pencil of rays which actually traverse the
system.

Indeed, as the object point I, approaches the front focus, it is clear that both X and
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the maximum «, tend to zero, so that only an infinitesimal portion of the rays can be
dealt with by the method of successive aberrations, 7.e., by the TAYLOR’S series.

That the range of failure is by no means an unimportant one is shown by an
example given by the authors in a paper read before the Optical Society in December,
1918. In this example the system considered is a positive lens of unit focal length
and thickness y', meniscus shaped, with curvatures 1 and 2'36, and its convex side
towards the incoming light. For such a lens and magnification as low as 2, the
critical value of «, is found to be about 4° 40’, corresponding to a value of a, of 13°,
whilst the greatest practical value of «, is 26°, so that in this case only about  of the
light going through the lens could be dealt with by series in terms of the emergent
angle. From M = 2 to M = o the conditions are still worse.

As a matter of fact, it appears that in this case the range of magnifications, within
which development in terms of the emergent inclinations is possible for all rays
travelling through the lens, is restricted to a range lying somewhere between M = —1
and M = 1'5. This makes it clear that we cannot depend, in the calculation of the
aberrations of an optical system, upon any series with the emergent inclination as
argument. This is important, because from other considerations it would have been
valuable to have been able to express the equation of the emergent ray in the
form

y+ge =f(q)

where ¢ is the inclination of the emergent ray, and to proceed to obtain successive
approximations to the caustic by developing f (g) in powers. It now appears that
this is not, in general, legitimate.

We now come to the consideration of series proceeding by powers of a,, or of its
trigonometrical functions. Here the question of many-valuedness will not occur,
except as follows.

If we consider a ray impinging upon a spherical refracting surface, this ray, if
produced, will meet the surface at a second point. Treating the problem from the
purely analytical standpoint, this second point is also one at which refraction takes
place, and thus, for the same a,, there will, in general, be two values of a,, four of a,,
and so on. a,, will therefore, in general, be a multiple-valued function of «, and
the aberrations will also be multiple-valued functions, and the branch-points of these
multiple-valued functions will, as before, limit the convergency of the TavrLor
series.

Now clearly two branches coincide whenever there occurs a grazing incidence ;
‘and, therefore, if the system be so arranged (as it almost necessarily is) so that no
grazing incidence is reached, there will be no real branch-points within the range of
practical values. But this does not mean that the TAYLOR'S series will necessarily
be valid, for there might be imaginary branch- pomts A very simple example will
show how such branch-points can occur. ‘


http://rsta.royalsocietypublishing.org/

%
I

a4
A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

JA \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

SPHERICAL ABERRATION FOR ASYMMETRICAL OPTICAL SYSTEM. 37

If I, be a source of light placed in front of a plate of thickness ¢, and refractive
index 7, the perpendicular from I, on the plate being the axis of the system, it is
easily verified that the longitudinal spherical aberration

J4I4 — C2< ]_ _ ta;n a2>’

n  tan a,

where sin a, = n sin a,, so that
c 1—sin’a
JI =%2/1- v e

n 1 — sin” e |-

The branch-points here correspond to ¢, = 37 or a, = 4w, s.e., to grazing incidence at
the first or second surface respectively.

Clearly if n >1, then, since sin® o, =< 1, the second grazing incidence can never occur
for real values of a,.
But if we take as our argument ¢, = tan «,, which removes the first branch-point

to infinity, we find
1 A
J I =2(1— -
" M1+t20<1—7> :
0

and this has imaginary branch-points where ¢, =+ —, " . The radius of con-

V/(n'—1)

vergence of the TAYLOR'S series in ¢, is therefore given by ¢, =

n
| =)

does not correspond to any physical limitation of the rays. This applies to both the
longitudinal and the transverse spherical aberrations in this case.

The above example also brings out another important point; for if in it sin «, is
taken as the argument, the branch-points are +1, + n; both of which correspond to

_definite physical limitations, viz., grazing incidence and total internal reflection, so
that in this case the limitations of the TAYLOR’S series are also the limitations of the
problem.

We see then that the validity even of the expansion in &, may be limited by the
existence of branch-points, and that the choice of the particular trigonometrical
function in which we expand may exercise a considerable influence on the result.

The limitation of the a, developments due to branch-points will not, however, as in
the case of the a, developments, lead to vanishing radii of convergence. There is
always a finite region within which these developments may be used. In what
follows, therefore, we have exclusively used «, as argument.

In dealing with the longitudinal gpherical aberration another limitation presents
itself.  'We have seen that if a, = A (fig. 2), @y = 0. It follows that the intersection
of the emergent ray with the axis is then at infinity, or the longitudinal aberration is

VOL. CCXX.I—A. G ‘

, a value which


http://rsta.royalsocietypublishing.org/

s \
Vam \

a4
A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

JA \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

38 MR. T. Y. BAKER AND PROF. L. N. G. FILON: LONGITUDINAL

infinite and afterwards changes sign. Thus the values &, =+ correspond to poles of
the longitudinal aberration. These poles, being the singularities of least modulus,
govern the convergence of the TAYLOR'S series in this neighbourhood, and this radius
of convergence tends to zero as the object approaches the front focus. It was a con-
sideration of this difficulty which primarily led us to put the longitudinal aberration
n a new form.

This difficulty does not arise with the transverse spherical aberration. The poles of
the longitudinal spherical aberration are due to the zeros of a, and on multiplying

by ta,lrvl[ % to get the transverse aberration, these poles disappear.

§ 4. Summary of Method and Results.

The general principle of the method employed was suggested by an attempt to fit
an empirical formula to the longitudinal aberration of a lens for a certain range of
curvatures and object and image positions. This empirical formula was discussed by
the authors in a paper recently read before the Optical Society* and was found to
give, on the whole, a singularly good fit.  Briefly stated, the formula is of the
following type :—

2
AC )

Ax = —
1+ Be¢?

~where ¢ is the slope of the emergent “Gaussian” ray, so that ¢ = ¢,/M. A is the
(known) theoretical constant of the first-order aberration, which is a quartic in the
magnification, and B is a cubic in the magnification, the coeflicients in which are
determined empirically. This formula was found to give a good approximation, even
when the magnification was high and we were working well outside the limits of con-
vergency of the TAYLOR’S series for Awx.

If we consider any given object point, the longitudinal spherical aberration will be
a function of ¢,, thatis, of ¢. Denoting it by f (¢), the reasoning of the preceding section
shows that f(t) is always one-valued for a finite (and generally quite considerable)
range of t, but it is not regular, having poles at ¢ = + +, where = = tan \/M and
becomes rapidly small as the magnification increases numerically.

If, however, we write (1—¢/+%) f (t) = ¢ (¢), ¢ (¢) is now limited only by the original
branch-points of f(¢) and will, in general, have an adequate radius of convergence.
We may therefore expand it in a TAYLOR's series, and we get for f(¢) the form

_ a4+ bt +oet+ ...

Av = f(2) ey (2)

* BAxER and FIroN, “On an Empirical Formula for the Longitudinal Spherical Aberrations in a Thick
Lens,” ¢ Proceedings of the Optical Society,” December, 1918,
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If the series in the numerator converges rapidly, it will be sufficient, provided @ is not
near zero, to stop at the first term, and we get as an approxiimate formula

at?
Ax = —]-_—_—t‘g/;.—z . . . . . . . . . . (3)

which is of the same form as (1).

We have necessarily a = A, and if the two formulae are to tally we should have in
addition B =—1/+%

The formula in the form (3), however, is not rigorously correct to the second order of
aberrations inclusive, unless b happens to be small. If we wish to retain second order
terms complete, we have to use o

2 4
Ax.:‘{it___j%. @

and this can be written, to the same order of algebraic approximation, in the form
Ax = at?[{1=(1/*+bla) e}, . . . . . . . . (5)

provided again a is not zero.

If this form (5) is adopted, then the B of the empirical formula should be 1/7*+0b/a.
But if this is done, the formula suffers from two defects: (i) it fails whenever a is
near zero; (ii) it does not give exact compensation for the poles in the critical range
for M large.

The further question then arose: how far are formule of type (4) or (5) suitable
for dealing with combinations of surfaces or lenses ? An important guiding considera-
tion, in all work of this kind, must be the relative simplicity of the formulse in
passing from a single surface or lens to a combination, and whether these formulse are
suitable for tracing the effect of individual surfaces or lenses upon the final result.

We have ultimately been led to the conclusion that no single formula can satisfy
completely the three ideal requirements, viz. : (i) exact agreement with development
as far as the second order inclusive; (ii) simplicity in dealing with combinations :
(iii) exact compensation of the poles in the critical range of M.

The method finally adopted satisfies conditions (i) and (ii). It only satisfies (iii)
approximately. Numerical calculations show that numerically the approximation is
adequate in the case of a lens or a simple surface. In the case of more complicated
systems we have, as yet, no numerical data.

The first part of the investigation deals with the single refraction. Tt is there shown
that the longitudinal aberration can be put into the form (1), t.e., Ax = A#*/(1+B#?),
where the formula is correct to the second order inclusive.

We also find, for the inclination of the emergent ray, the formula -

g=t(1+B/(1+C), . . . . . . . . . (6)

¢ 2
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which is correct to the first order when ¢ and ¢ are tangents and to the second order
when ¢ and ¢ are sines. °

In the above A, B, C are polynomials in M of degrees 4, 8, 2 respectively, so that
the empirical formula is well justified for the simple refracting surface. In this case,
too, it is possible to calculate + directly, and, in fact, a simple geometrical construction
is given for it. When this is followed for varying image-positions, it is found that
outside a certain range of M, the = so obtained becomes irrelevant, and that, in fact,
if the correct factor 1—#?/+* is retained in the denominator of Awx, although it
improves the fit by removing singularities in the range round M = o, it introduces
entirely fictitious singularities in other and important parts of the range, and makes
the formula worthless. ‘ : '

A good deal of light is thrown upon the problem when it is found that, if we

develop 1—2in descending powers of M in the neighbourhood of M = oo, the two
T

leading terms are discovered to be identical with the two leading terms of the
cubic B, previously obtained. This makes our B approximate more and more closely

to Lz precisely as the effect of the denominator term becomes more important, and it
. .

is this fact which is the key to the numerical value of the method.

We then proceed to show how the constants for a combination of the two systems
can be obtained from the corresponding constants of the individual systems. In
doing this it appears that, so soon as we pass from the single refracting surface to
the lens, a new constant is introduced into the formula, which now takes the form

A+ Ett
Ax = T—S—B—t? e e e . .. e (7)

where A and B are of the same form as before, but E is now a polynomial of
degree 6 in M. In the case of a lens the term Kt is found to be, in general, of
small importance, which accounts for the good fit of the empirical formula.

The formula (7) for a combination holds good to the second order inclusive, and B

agrees with 172, when M is large, as far as the leading term only. For numerical
= .
purposes, however, a correction is discussed, which is very readily applied, and which
makes the two leading terms in B agree with the two leading terms in 15, as in the
T

case of the single refracting surfaces.

The formulee for combining two systems take comparatively simple forms; the A,
B and C for the combination are expressed as linear functions of the A’s, B's and (s
of the components, and the E as a lineo-linear function of the A’s, B's and (s of the
components, each term involving a product of which one factor belongs to one
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component of the combination and the other factor to the second. In addition the E
for the combination involves linear terms in the E’s of the components.

These results are found to hold good in the more general case of the combination
of three or more systems. It will follow that if the constants A, B, C, E are
tabulated for lenses of various curvatures, the effect of' the combination can be traced
relatively easily and the aberrations corrected, so far as possible, by suitably bending
the lenses, while keeping the general arrangement and the magnifications the same.

Explicit values of the constants for the single refracting surface and a single thick
or thin lens have been obtained and are tabulated for reference, so as to be available
for eventual computation of the required tables. We have also given some numerical
values for a single lens, and a numerical test of the accuracy in this case, which works
out at about x§g of the total aberration for the range of cases taken.

The corresponding formulee with sin v instead of tan B8 as argument are discussed,
and it is shown that the equations of combination are of the same form as before.

Certain invariant relations between the coefficients in A, B, C, E are developed,
which enable various calculations to be simplified and in particular to determine these
constants for a system reversed, when they are known for the direct system. This
will generally halve the work of tabulation.

§ 5. The Single Refracting Su}face.

Using the general notation described in § 2, consider refractions at a single refracting
surface. '

Let v, y, denote the angles of incidence and refraction, so that v, = C,P\I;, v, =
C,P.L (fig. 1).

Let CI, = X, = x,, C.I, = X, = a,+ Ax,, C,J, = x, we then have the set of refraction
equations

Sin, = pofrs = Xesinagfry. . . . . . L. ‘. (8)
siny, = puofr; = Xysinayfry, . . . . . . . . (9)
Ty Py = T Py (10

o— 0ty = Yrg—ry . . (11)

Let ¢ = A'\l,, & = A"J', in the “ equivalent” Gaussian system (see § 2). Then
In’()f() = Q)O—}—Tl, n2$2 = {1’)2+’7'1, . . . . . . . (12)

and we find, using the first approximation when a,, &c., are small

ae—-1é&=1A . « - « . . .« . . (18)
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If M, = La,/a,, which we shall call the ray magnification, we have
ag—>-0

Ml = ngfg/nofo = n2x2/n0m0. . . . . . . . (14)
The transverse magnification M, is given by
M, = £./8, = wofao = nMyfn. . .« . . . . . (15)
We can also express (13) in another well-known form, namely,
nofxs—mnofry = 1f, - . . . . . . . . (16)

x, = ny i (1_M1)/M1

xy = mofy (1-M;) ‘
Again, from (9), (8) and (10)

whence, using (14), we obtain

(17)

X, = pufsin a, = nyx, sin ayfn, sin a, = n, f; (1—M,) sin a,f/M, sin a,

=aysina/M;sine,, . . . . . . . . . . . . (18)
and the longitudinal aberration
Az, = X,—u, = @, (sin aof/M, sina,—1). . . . . . . (19)

The corresponding longitudinal aberration in the equivalent Gaussian system is

found from :
A& = Awyfn, = (ny fifn,) (1—M,) (sin /M, sin a,—1). . . . . (20)

Now from (11)

SIN oy = SIN 0oLy COS Yy COS Yy + 81N Yy COS 0ty COS Yy —SIN Wy COS ty COS Y

+ 81N a SIN VY, SIN Yy,

whence, using (8), (9) and (10),

sin ayfsin e, = {1—(a,/r,)* sin® a, 1> { 1 —(nyw/nyr)? sin® o, }*
+(aofr,) {1 —sin? oy }* {1 —(nyaefnyr,)? sin? o, }*
—(mgxofngry) {1 —sin? oy} { 1 —(ofr1)? sin® o, }*

+ (ng 2 ngry?) sin? o,

and developing this in ascending powers of sin &, we obtain, retaining only terms of
fourth degree

Sin ayfsin oy = 1+, (7,—n,)[ng —1P sin® a,

—4P sin® a; {{(ny4n0)22 + 10 (11— ) (01 + 1070) } [1°747,
where '
P = (1—nyfns) (@ofrs) (1 4a,/71) (1 —ngofngm),
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and is the quantity whose vanishing gives the aplanatic points and must therefore be
a factor of every coefficient after the first in the development of sina, in powers of
sin o).
If we write for shortness
Q = (1 +nofny) a2+ (1 —afr1) (1 + 52 /1571),

and remember that
1+, (ny—n,) [0y = 1/M,,
we find
sin a,fsin a, = 1/M;—1P sin® o, /(1 —%Q sin® a,)

= M, {1 —(FPM,+1Q) sin® &, } /(1 —1Q sin” ,)
=M,~{1+Bsin? o,/M?}/{1+Csin®a,/M?} . . (21)

correct as far as the second order inclusive, where
IPM 51 2 _ 1 2
B = —4PM’—1QM*  C= —3QM/}
from which, after some reductions

C = _%‘ (7’&2—’/&0)—2{(7@22 + nong + %02) - 3 (n02 + 7?/22) M] + 3 (%22—-")’2,0’1’&2*% %02) MIQ}’ (22)
and
B= 21‘ (nz"no)uz (1 "Ml) (nz"'noml) (Wo"nle) +C
= 1 (1a—n0) "% { = (0’ = 1m0, +1,2) + (ny—n, ) M, — (1, + 12— 5ngm5) M2 —2nn,M;?}.(283)

Returning to equation (19) and using (21)

Az, = 2, (C—B) M,~* sin® o,/ {1 + BM, 2 sin” o, } ,
= n, LAM, 2 sin® o,/ {1+ BM,?sin® oy}, . . . . . (24)

a, (C—B)/n,f,
=% (na—n,)~2 (nofn,) (1 =M, )? (ny—1,M,) (72,—n,M,)
— g0y + (74102 ML, — 2 (157 + gy + 107) Mﬁ}. (25)
+(ny+7,)* NP —ngn,M,*

where

A

Il

(=) (f) {

All the above formula are correct to the second order of aberrations inclusive. We
note that A, B and C are polynomials of degree 4, 3 and 2 in the magnification
respectively.

If we express the aberration in terms of tangents instead of sines we have at
once :
Axy = 1, LAM, 2 tan® e,/ {1 + (B+M,*) M,~2 tan® o)}

=, fiA tan? Bof {1 +Btan?B,} . . . . . . . . . (26)
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where
B =B+M/?

= 'gf (7’L2-—n0) { (ng “‘nong'l'no )+(1’L2-—7L0) M +3( —'nong‘*‘no )M12—2n0%2M13}. (27)

When, however, we come to develop a formula for tangents, similar to (21) for
sines, it is found that, in the series for tan a,ftan &, we do not have all the coefficients
after the first vanishing together ; for, even at the aplanatic points, the tangent ratio
is not constant.

We can, indeed, write

tan apftan e, = M,~' (1 +BM,~? tan® &,)/(1 + CM,"? tan® ), . . . (28)

and choose the coefficients B and C so that the developments shall agree as far as terms
in tan* a, inclusive. This can, in general, be done in one way only. But we then find
that B and C are no longer integral functions of the magnification. Their infinities
have to be taken into account, and generally the method becomes complicated and
unsatisfactory. ‘

From other considerations, however, it appears that since the zeroes of o, must be the
same as the poles of A, the B in (28) must be the same as the B in (26), and this
will fix C as follows :— '

tan? a, = sin? a,f(1 —sin® a,)
M,~?sin? a,{1 +B sin? o, /M2 }?
{1+Csm atof M2 — DM, =2 sin? oy { 1 + B sin? o, /M }2

M,2tan® a,{1+(B+M,?) M,~* tan® o, }*
(1 +tan?a,){ 1+ (C+M>2) M, ?tan’a, }*— M, ?tan®a, {1 + (B+M?) M, *tan’a,}?

substituting from (21).
Hence, taking the square root and developing the denominator in powers of tan 8,,
v.e., of M,"!tan a,,

— (1+Btan?B,)
ban ayftan 8 = 1+tan?B, (C+3M2—3%) +1 tan* B, {C (1 + M;*) +4M,*+ $M,*— 1+ — 2B}
= (1+Btan®8,)/(1 +Ctan? B+ D tan*B,), . . . . . . . . (29)
where

C=C+3M -3
D=C(1+M?)+3M*+3M>*—1—2B A . 10))
=C(1+M?)+4% (1-M?) (1 +3M,*)—2B
(29) is now correct as far as the second order inclusive.

If we only require the tangent ratio correct up to the first order of aberrations,
we have the formula

‘tana2=tanBz(1+Btan2,82)/(1+0ta,n2,82) ... .. (31)
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The value of C, when written out fully, is given by

C = § (ng—ny)? { = (0 —neny+ne?) + (0,2 +n,2) My + (02— 3ngn, +n.2) M2 . (32)

§6. The Convergency Factor and the Singular Inclination for a Single
Refracting Sunface.

Having now obtained expressions (24 and 26) for the longitudinal spherical
aberration, which are correct to the second order of aberrations, when expansion
in powers of sin &, or tan a, is legitimate and rapidly convergent, we have now to
enquire how far the same expression remains valid as M increases, in which case we
know that B or B increases without limit and the convergency fails, even for
comparatively small values of a,. :

Here it will be convenient to introduce two definitions :—

I. We shall call singular inclination the value A (see §38) of , for which the
emergent ray is parallel to the axis.

II. The factor 1— sin® afsin? A (or 1— tan® a,/tan’ X if we are dealing with tangents)
we shall call the convergency factor. If we multiply Ax by the convergency factor
we remove those singularities of Az which are instrumental in causing critical failure
of convergency. A

To find the singular inclination and convergency factor for a single refracting
surface, we have to find when a, = 0.

Going back to the fundamental equations (8) to (11) we have a; = 0 when a, =2,
where

. A=Y=V
which leads to

SIN A = SIn Y, COS Yy —-8IN Y, CO8 Y,
= (no sin A1)/ {1 = (@, sin Afry)2} — (2 sin A1)/ {1 = (myix, sin Xngr,)*}.

Hence, either sin X\ = 0, which obviously refers to the axial ray, a trivial and (for our
purpose) irrelevant solution, or

= (ngfna)y/{1=(osin Afr )2} — /{1 =(ngz, sin Ang )} . . (33)
On rationalising (33) leads to
anlsin® Ang? = 42 —(L+r32fx) —ndfn?)?

= — (L4 fay—mofns) (14 o2y + /1) (L =1 fxy+ngfn) (L =732y —m[n5). (34)

This gives the singular inchnation.
If we write

R = (1+0fay—ngfns) (L7 fay+ 1) (L= fa+ ngfng) (L=rfa,—10fn), . (35)
VOL. CCXXL—A. H
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it follows that
T4+dnlsinfafnR. . . . . . . . . . (36)

is the required convergency factor.
If the formule of §5 are to get accurately over the failure of convergency, this
convergency factor should be identical with
1+ B sin? o,)/M 2,
that is, we should have
B=an M?n,R,. . . . . . . . . . (37
which; when written out, becomes '

B = 4nn,2 M2 (1—M,)4/(n,—n,)? (1 —2M,) (ny+ny—20,M) (ny+n,—2n,M,) . (38)

This does not agree with the previously found value for B, being of fractional form
in M,. Tt doeslead to B becoming infinite of the order M when M, tends to infinity, but
it indicates an infinity of B (and therefore a critical failure of convergency) at three
other places, namely when M, = %, & (n,+1,)/n0, & (10+7,)/n,, at none of which does a
failure of convergency really occur, as can readily be verified.

The reason for this is made clearer by geometrical reasoning as follows :—

Let P,Q, (fig. 8) be a ray which is parallel to the axis in medium 2. To make the
figure easier and the quantities dealt with positive, the refraction has been taken
from a denser to a rarer medium, so that nfn,>1.

Fig. 3.

In the triangle I,C,P, of fig. 3 we have sin v/ sin, = I,P,/x,.
But '
sin by sinyy = nyfny; hence TP, = ngrefn,.
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The point P, and singular inclination X can therefore be constructed geometrically as
follows.

With I, as centre and radius 1.Cilofn, describe a circle meeting the refracting
surface at P,; C,I,P, is the angle X required.

This angle A approaches zero, that is, we get a critical failure of convergency, when
the two circles approach contact at A, The limiting case is, therefore, when
AT, = n,. CI[n, or I divides A,C, externally in the ratio n, : n, ’

When this happens 7+, = n@,fn, leading to M, = o, a case of true critical
failure.  But clearly, by symmetry, we get a precisely similar result when P,Q is
due to a ray entering the surface at Q,, and travelling backward through medium 2.
In this case the limiting position of I, divides B,C, externally in the ratio n,: ny and
is defined by 7 —x, = —ngr,fn, or My = . '

This case would correspond, analytically, to &, = m, and the coi“responding equa-
tion (83) would become ., '

_"'1/900 = (no/nz) \/{ 1 —(950 sin >\/’r1)2} - \/{ 1 ""(Wowo sin X/an.ﬁl)s}’

Now if we examine (34) we find that in the process of clearing roots, i /x, appears
squared in the final result, which accordingly includes both @, = 0 and a, = 7. If we
write 22,2 = u, then we should really write equation (33) in the form

VU = (mfn,) o/ (L—sin? AMu)— /(1 —n? sin’ \fnlu), . . . . (39)

and the two cases are discriminated by assigning to 4/ one or the other sign. One
of these cases is necessarily irrelevant since refraction at the posterior surface of the
sphere is physically excluded.

Further, if we consider the other two values which make R = 0, viz,

M, = (n,+n,)[2n, and My = (n,+n,)[2n,,

they correspond to - .
1+ 2, = — N 10
and ‘ ,
7 =X = Mo N
i.e., to positions of I, in which it divides A,C, and B,C, wnternally in the ratio n,: n,.
But these belong geometrically to the limit of cases in which the incident and
refracted rays lie on opposite sides of the normal, s.e., to a negative refractive index.
And indeed they are obtained from the two previous points by reversing the sign of
'n'o/n2- o ' o '

Here again, examination of (34) shows that n,/n, appears squared in it. Therefore
(34) includes the cases in question. These, however, may be obtained analytically by
changing v, or v, into its supplement, i.e., by reversing the sign of cos, or cos,
or by changing the determination of the sign of one-or other of the square roots on
the right-hand side of (39). v '

H 2
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The cases are discriminated by the vanishing of these square roots, which occurs
when cos v, or cos -, = 0.

It appears, therefore, that the vanishing of the factors in the denominator of (38)is
wholly irrelevant, and, if we adopted for B the value given on the right-hand side
of that equation, we should thereby be introducing, in the neighbourhood of M, = 3,
(70+1,)/2n, (n,+n,)[2n, entirely irrelevant singularities, which would make the
formula worthless. :

The question arises, what is the range of values of M, for which the equation

dn?sin’ Afn = —R
is valid and legitimate ?

If we start from M, = o, which corresponds to a real case, the signs of the square
roots in (39) are well determined, and the correspondence between sin® A and M, is
unique and definite and can be continued until we reach a point where one case
passes into another. These cases we have found to be the branch-points of the
three square roots, namely :—

u =0, cosy, =0 and cosy, = 0.
u=0 leadsto zy=ccorM,=0. . . . . . . . (A)

cos y, = 0 leads to sin® A = u, or, using the first form of (34)
dnlufn? = du—(1+u—n2fnsd),
i.e., (1—u—n?n,?)? = 0, that is u = 1—n,%/n? leading to
@y = +r (1=n2fn?)~ and M, = {1 +(n,—n,)//(n’—n")}* . . . (B)
cos ¥, = 0 leads to sin? X = n2ufn? that is, to
w=mnlfnt—1, @, = +7 (nifn—=1)"% M, = {1+(n,—no)/v/(ni—n2)}". . (C)

If ny > ny, both values of M, given by (B) are imaginary. The values given by (C)
are both positive, M, = {1+(n,~n,)/y/(n’—n,?)} " being the greater.

The range over which we can travel without ambiguity is, therefore, from
M, = + o to M; = {I+(n—n,)/y/(n>—n?)} " and from M, = — o to M, = 0.

If ny <n, the values of M, given by (C) are imaginary, those given by (B) are
positive, and M, = {1 —(n,—n,)[y/(n,>—n’)}  is the greater, so that the range of
validity is from M; = + o to M, = {1 —(n,—n,)/+/(n’—n,*)} " and from M, = — o to
M =o. '

Within this range (14 4n,® sin? a,/n,’R) is the correct convergency factor; outside
this range it is irrelevant.

It is clear, then, that we cannot find a single formula for the convergency factor,
which will hold for all values of the magnification.
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Further, if the factor (1+4n; sin® ayf/n,’R) is introduced into the denominator
of Ax,, we no longer obtain expressions of the simple type (24) and (26), and
endless complications are introduced when we come to consider a compound
system.

Can we make our expressmn B given by (23) give a tolerable approximation to
(4n,"M, 2/n22R) for those regions where the denominator factor is really needed, namely
for M, large, positively or negatively ?

To get the answer to this question we develop (47,°M,?/n,’R) in descending powers
of M,.

This is found to be (the most rapid method is to break up first into partial
fractions)

% (nz"no)_2 —2n,m, M*— (noz —dnyn,+ 72'22) M?
- [(72;2 ""77;0)4 + n02n22:| Ml/Znonz - [(n2"_ %0)3 (’IL23 - nos) + n23n031/4n027’b22 . (40)
+terms in 1/M,, &c. ‘

If we now compare (40) with (23) we find that the most important terms when M,
1s large, namely those in M;* and M;? agree in the two expressions.

We may, therefore, take it that the approximations (21) and (24) which we have
seen hold good to the second order when expansion in series is convergent, will
probably not be numerically very far out when M, has a large value, in which case
the normal method of development cannot be used.

It is important, at this stage, and to justify the above assertion, to consider a few
numerical examples.

Tables I. and II. give the values of Ax, and sin a, for a single refracting surface,
calculated for a number of values of M, and two inclinations in each case. =The
inclinations are fixed from the perpendicular distance @ of A, from the incident ray.
This, for moderate inclinations, is sensibly the same as the intercept made by the
incident ray on the principal plane. @ has been given the two values 05 and 025
in every case, except for M, = 2 where @w = 0'5 leads to a physically impossible value.

In this case w = 025 and ® = 0°125 have been used to define the ray.

In each case four values have been computed (1) the correct one, from trigono-
metrical calculation ; (2) the values given by formulse (21) and (24)—these are shown
in the column headed *fractional formula” ; (3) the values obtained by expansion in
series, up to the optician’s first order of aberrations inclusive, that is including sin®e
in the development of Az, and sin a;,—these are shown in the column headed “first
order”; (4) the same series carried to the second order of aberrations inclusive, .e.,
to the terms involving sin’® a,—these are shown in the column headed ““second order.”
It should be noted that these first and second order approximations are the most
accurate that can be obtained, much more so than more usual ones, proceeding in
powers of sin a, or tan a,.
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TABLE I.—Values of Ax, for Single Refracting Surface.

M. w. First order. Second order. Ffractlonal True.
ormula.
10 0°b - 33-35293 - 1076252 +27-18563 +926°66794
10 025 - 8:33823 = 1298025 - 18+81008 ~18-85273
2 025 - 0-250000 -~ 0-378906 - 0-516129 ~ 0-527526
2 0-125 - 0062500 - 0-070557 - 0-071749 - 0071781
05 05 - 0°015625 - 0°016541 - 0-016598 - 0-016611
05 025 - 0°003906 . — 0-003963 - 0:003964 - 0-003963
0 0-5 —~ 0°166667 = 0-174769 - 0-175183 - 0°175809
0 025 — 0°041667 - 0-042173 - 0-042179 - 0°042189
-1 05 - 1-000000 - 0-947500 - 0-950119 - 0+956680
-1 0-25 - 0°250000 - 0°246719 - 0-246761 —~ 0°246838
TasLe IL—Values of Sin , for Single Refracting Surface.
M. w. First order. Second order. Ffractlonal True.
ormula.
10 05 +0°0250865 +0°0454644 +0°0576348 +0:0610770
10 0-25 -0°0078936 —-0-0072568 -0-0071911 -0-0071828
2 0-25 -0-2187500 —0-2065430 -0-1987180 -0°1978219
2 0-125 -0°1210938 -0-1207123 -0-1206710 - 0-1206691
05 0-5 0-2539063 0°2541962 0-2542195 0°-2542230
05 0-25 0°1254883 0-1254974 0-1254975 0°1254974
0 05 0-1805556 0-1817130 01826667 0-1827294
0 025 0:0850694 0-0851267 0°0851286 0:0851291
-1 05 0-1250000 0-1299375 0-1311526 01314354
-1 0-25 0:0531250 0-0532793 0°0532873 00532884

It appears from the above that the fractional formule are not merely equal, but
appreciably superior to the second order formulee, and this not merely in cases such
as those of the three first entries in Table 1., in which the convergency of the series
for Ax, is either absent or slow, but in every case where the fractional or second order
formulee differ sensibly from the true value. (Clearly a divergence of 1 in the last
place cannot be claimed as significant, for the last figure in Tables I. and 1L is probably
not correct within +2, in some cases.) An estimate of the range of the formula can
be obtained from the fact that in the cases, w = 05, M; = 10 and 2, the angles of
incidence were 52° 34" and 48° 35’ respectively, and, for the other values, angles of
incidence of 20° and 30° are quite common.

In view of this the accuracy of the results is surprising and, from the pomt of view
of the further applications of the method, most encouraging.
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§ 7. Combination of Two Systems.

Call the systems 1 and 8, and the initial, intermediate and final media 0, 2, 4.

fi, f» are the focal lengths of the systems, as defined in §2. M, M, are the trans-
verse and ray magnifications in the first system, M, M; in the second system.

M,+AM,, M,+AM, refer to the transverse and ray magnifications in the second
system when I, the true intersection of ray 2 with the axis, is taken as the object
point for the second refraction (instead of J,, which refers to transverse and ray
magnifications M,, M;).

Using the notation of §§ 2, 5, we assume

Axy = myfi (At 2+ E,)/(1+Be?) . . . . . . . (41)
¢ =t(1+Be)/(1+Ce?) . . . . . . (42)
where ¢, = tm {ay}, t, = { ts in 72} and B,, C, have suitable forms according as sines or

tangents are considered. The constant E, is zero if the systems reduce to single
refracting surfaces. Its form in the more general case will be discussed later.

If we denote by Ax, that part of Az, which is due to Az, and by Agx, that which
is introduced by the aberrations proper to the system 3,

Ay =—n, fy AM,
where AMj is obtained from Ax, by means of

Awy = ny fy {1/(My+ AM;)—1/M,},

leading to
AM, = — M2 Az,/(n, f3+ M, Ax,).
Thus
Ay = ny /1M 2 (A2 + Bt ) {1+t2 (B, + M A ALf)) . . . . (43)
Again _
Ay, = nfs {(Ag+AA,) ¢ (M, +AM) 4+ (B + AE,) ¢! (M, + AM,)~*}

C14+(B+ AB;) ¢, (M, +AM,)~?
=, fo[{AM; 2+ AM, d (A3M3—2)/ dM,}q,’+ Eyt," M _4]/ (14 B, M,-?), (44)

retaining only terms of second order in ¢,>. Writing now for ¢,’ in the above its “ first
order ” equivalent ¢,2+2 (B,—C,) ¢,*, we have

Aoch = Al-’l?.;/ 1y + A3904/”7'4
(M AN 20 LA BAMAL, 4 ByM 2~ A M d (AN )M,

_ +AAMM ) £ {BAM, 424, (B~ O)M-2+EM~4}] _‘ (45)
{148 (Bi+ AM; £iffs) {1+ Bgt,/M*} T S
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Remembering that ¢, = My, and retaining only the first two terms of the denominator

product
Az, fn, = (st Bt )(L+Byt?) . . . . . .. (46)
where
Sy = LA HAAMSME L 0 L L L L (47)
Bi; = B+ BM2+ A MM /f,. . . . . . . . (48)
Jislhy = fol+ /LB MM
+ A M {BM,?+ A, M, —M,"M,? d(AM*Z)/dM}
+ fHAM? {3B}—-2C,}. . . . . . . . . . (49)
Again ‘

_ ¢ (M + AM) ! {1 +(B,+AB,) ¢, (M, +AM) 2l
= 1+(C+ AC,) ¢, (M, + AM)- :

and retaining only terms of order ¢,

¢s = ¢ (M,+ AML) ™' (14 By, M, ) /(1 4 Cyt "M, %)
= t,M," (1 — AM,/M,) (1 +Bt,%) (1 + Bt,"M,~2)/{(1+C.t.%) (1 + Cyt,/M,~2)}
= t, M, (1 + B>+ Bt,2M, 2+ ¢,2A M, £ [f,)/(1 + Cit.2 + Cat, M, ~2)
=t (1+Bat)/(1+Cutd), . . . . . . . . . . . . . . . . (50)

where B,; has the value given by (48) and
013 = C3+01M32. . . . . . . . . . . (5])

The equations (47), (48), (49), (51), give the constants for the combined system in
terms of those for the components. It may appear at first sight as if the choice of
the constants B; and E;; had been arbitrary, for clearly, i_f' \ be any quantity,

{j‘l3A—13t42 +.f‘13 (E13+ >\A-L‘%) t44}/{1 + (Bl‘3+ A) t42} )

will give a development equally valid to the second order. But, if we do this, and
we wish to preserve the simple character of the relation (48) giving the B for the
combination, A will have to be a linear function of A, A, B,, B, AA;; must then
necessarily contain terms of one or other of the forms A,B,, A A;B;, A2 Thus
the new E will contain such terms and will no longer be of type (49) which is linear
in the aberration coefficients of each system taken separately. Thus the lineo-linear
type of equation for E,; requires A = 0.

We note also that the equations of combination are identical in form, whether we
are dealing with the sine or the tangent of the inclination as argument.
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§ 8. Nature of the Quantities A, B, C, E in the General Case of any System.

In the case of the single refracting surface we found that A, B, C were polynomials
of degrees 4, 8, 2 in M, and that E was identically zero.

In addition, for such a surface, equations (23), (25) and (27) show that the
coefficient of M*in A is 7nyfn, times the coefficient of M in B or B. This may be
otherwise stated in the form :—

A—nMB [, ie, A,=MB, . . . . . . . . (I

is of the fourth degree only in appearance and reduces to an expression of the third
degree in M, or M,.

The same holds good for A,—M,B,, so this result is independent of whether the
sine or tangent is taken as argument. The same remark applies to all the results of
the present section and to the other invariant relations shortly to be proved. We
may therefore conveniently state it here once for all.

If we now refer to the equations (47), (48), and remember that in any combination—

Mylfs = M/fs—=1f - . . . . . . . . (52)
1/flM13=1/,ﬂ3M1—1/f3_.‘. e e oL (53)

and

with the corresponding equations

nMylfs = nM[fis—nfi. . . . . . . . . (54)

n‘lﬁl M13 = n2”13 Ml_n()[f.g . . . . . . . . (55)
M,=MDM,; M, = M, M,,

and the obvious conditions

we note first that, if A;is a quartic in M, it 18 also a quartic in My, or M,;, and that
if A, is a quartic in M,, it becomes, on multiplication by M;*M;}* a quartic in M,,
or M, since M, = n,M,[n,, and therefore M;"M;*M,? = 7,"M,/M.*~"[n%, which makes
every term in A, MM a quartic in M,;, because M; is a linear function of M, and
4—r is here zero or positive.

(47) then shows that A,; will be a quartic function of M, if A, and A, are quartic
functions of M, and M, respectively. But we know this to be the case for a single
refracting surface. Hence it holds good of any system compounded of such surfaces.

Now consider (48). If B, is a cubic in M, it becomes a cubic in M,

Again, if A,—M,B, = a cubic U, in M,

) M32 (Bl + AIM&]‘;ME») = M32 (Bl{ 1 + Ml3;f‘1[f‘3} + U1M3ﬁ[]‘:3)

, = MM, f, (Bl/fl?, + U1[f3),
VOL. COXXI.—A. ' 1
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using (52), and by reasoning similar to the one given for A, the last expression is a
cubic in M,,,

Hence B,; is a cubic in M,,,

Consider now A;;—M,B, This is found, after some reductions, and using (52),
to be

(filfs) (As—M,;B;) +£,B/[fi + Mo M.? (A, — M,B,).

Of the above terms, A;—M,B; is a cubic in M, and therefore also a cubic in M,,, B,
is a cubic in M;;, A, —M,B, is a cubic in M; and when multiplied by M,M,? becomes a
cubic in M,

Hence if the condition (I) holds good for the components, it also holds good for the
resultant system. But we have seen that it holds for a single refracting system
thus it holds for any combination. Also B will be a cubic in M for any system.

As regards C, examination of (51), remembering that for a single surface C; and C,
are quadratics in M;, M, respectively, leads immediately to the conclusion that C is a
quadratic in M for any system.

We now come to the coefficient E. Here the single refracting surface gives no
precedent for E, and K, Let us examine the other terms in K, These can be
written in the form AA MM (B,— dA,/dM,)+3A,M2(f:B,+AiM:A,)—2/,AMC,,
and, using A,—BM, = U,; A;—B;M, = U,, where U,, U, are then cubics in M,, M;
respectively, this is found to reduce to

— A MM (M, dB,/dM;+ dU,[dM,) + 8A,MSM, £, (U, +£,B,[fis) — 2./:AM2C,.  (56)

Now
AM M, = quartic in M,

M, dB,/dM;+dU,/dM, = cubic in M, = cubic in M,,.
MM, (U, +£,B\[f:5) = cubic in M, = cubic in M,;.
A, = quartic in M,
M.’C, = quadratic in M,,.

Hence the three terms in (56) are of form
(quartic) (cubie) + (quartic) (cubic) + (quartic) (quadratic),
and this leads to a rational integral polynomial of degree 7 in M,;.

Further consideration, however, shows that it is of degree 7 only in appearance, for
the terms which can lead to expressions of degree 7 in M,; are clearly

—fMZMPA, dBa/ dM;+ 3A3f1M32M3 (U1 +f3B1[f13)’
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or, dropping the factor f;
M, M,{3A; (U, +£;B\/[f15) — M’A,dB,/dM,}

= M32M3 { 3B3M3 (Ul +.ﬁ3Bl/‘f‘l3) + 3‘[')-3 (Ul +.f:3BJ/ﬁ3)
—M,M,B, dB,/dM,— MU, dB,/dM,}.

UMM, (U, +£B\[f1s)

is clearly of the form cubic x cubic and the terms leading to expressions of 7th degree
reduce to

MM, {M,U, (3B,—M, dBy/dM,) + M;B, (3B f/fis— M, dB,/dM,)},

The term

and since dM,,/dM, = f,/f.,, this can be written
MM, {M,U, (8B,—M, dBy/dM;)+(M;B, f/fs) (3B;—My; dBy/dM,;)}.

But since B, is a cubic, in either M; or M;;, 3B;—M,;dB;/dM; and 3B,—M,, dB,/dM,,
are both quadraties in M; or M,

The above expression therefore reduces to M;x sum of two quantities each of form :
cubic in M;; x quadratic in M, that is, to a sextic in M,

We see, therefore, that those terms in E,; which do not involve E, or E, are a
polynomial of sixth degree in M,; or M,

It follows that for a lens E is necessarily a sextic in the magnification.

Suppose now that E, and E, are both sextics in M,, M, respectively. Then E, is a
sextic in M,; and E,M,*M.? will also be a sextic in M;,, that is E;; will again be a sextic
in M, '

Hence, since any system is built up of combinations of lenses or single refracting
surfaces, we find that E is a sextic polynomial in M for any system.

Examination of particular cases shows that K is not, in general, divisible by A, so
that the vanishing of the latter does not usually involve the disappearance of the
second order terms.

§9. Invariant Relations.

Certalin relations exist between the coefficients A, B, C, E which remain the same
in form, whatever the number of refracting surfaces. One of these we have already

dealt with, namely the fact that
A-MB

reduces to an expression of the third degree, .., the coefficients of highest degree in
M in A and B are the same. . .

This we shall refer to as the first invariant relation (I.).

A second invariant relation takes the form

B—C=2(1-M)+3dA/AM, . . . . . . . . (I)
12 '
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when we use tan 8, as argument, and
B-C=-}(1-M)+%+dAfaM, . . . . . . . (IT)

when we use sin y,, as argument.
That these relations hold good for the single refracting surface is readily verified
from equations (22), (28), (25), (27) and (32). Suppose now that, for systems 1 and 3

separately, the relation
' B-C = (1-M°)++dA/dM

holds, where ¢ = 4 or —} according to the nature of the argument, then from (48)
and (51)
B,;—C,; = B,—C,+ M2 (B,—C,) + A, M, M.} /,/f,
= o (1-M;;?) + % dA,[dM,+3M? (dA,/dM, +4A M, £i[f:),. . (57)
and from (47)

JSis dAm/ dM,; = f; dAa/ dM,;+ £ {M,"M,? dAl/ dM;+ A, d ,(M32M32)/ dM,,}.
But
AMy, = (filfia) AM, = (filf) M2 M,
Hence

dA,,f dM_la = dA,/dM;+ M2 dA,[dM, + ( £iA,[fs) d (MM?)/dM,,

and since M,/M, = const., the last differential coefficient is 4M,M,2
Using this result (57) becomes

Bl& O 13=0 (1 Mm )+ dAm/dMlsa

which is of the same form as the equation we started from. Hence, if the two
components of the compound system satisfy the second invariant relation, the
resultant system also satisfies it. But we have seen that the relation holds good for
single refracting surfaces—hence it holds good universally.

It should be noted that the second invariant relation is really a first order relation
and connects the first order aberration of the inclination of a ray, with the first order
longitudinal spherical aberration.

§10. The Constants A, B, C, E for an Optical System Reversed and for Negative
Lenses.

Certain important general relations are found to hold between the constants
A, B, C, E for rays going through an optical system and the corresponding constants
A’ B, ¢, E/, for the same system reversed, and By making use of them we can obtain
either set from the other. '

We arrive most simply at these relations as follows:—If after traversing the
system we retrace our steps, the result is equivalent to compounding the system with
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itself reversed, with the difference that, in the second set of refractions, the measure-
ment of length parallel to the axis is reversed in direction. An examination of the
equations (41) et seq., § 7, on which the formul® of combination are based, shows that
this is analytically equivalent to changes in the sign of the focal length in the second
set of refractions. :

We have therefore

f1=f, f3=—f, M1=M> M3=1/M, M1=M) M3=1/M, M13:M13:1;

and we also find that fi; = . But fi;A,; and f;E,; have definite limiting values,
and as f;; does not otherwise explicitly enter into the equations of combination, no
difficulty arises on that account.

Now, after retracing our steps in this way, we necessarily arrive at a perfect image,
so that Az, = 0 and tan «, = tan B,, leading to

SisAs =0,
Sl = 0,

and
B]3""013 E 0.

These lead to the following identical relations

A (M)/MAME-A’ (M) =0, . . . . . . . . (58)

E (M)/M2M*—E (M-")+A (M) M2 {B' (M) M?+3A’ (M~*) M +dA’ (M*)/dM}
—A (M) M2 {3B(M)-2CM)} =0, . . . . . . (59)
B (M) (M) +M-*{B(M)-C (M)} —A (M) MM =0. . . (60)

Equation (58) may be written in either of the two forms

A (M) = M2M2A’ (M)
A (M)fng = WA (MY n2 . . . . . . . . (1)

This we shall refer to as the third invariant relation. It shows that, if we divide
A by the square of the initial refractive index, the coeflicients of powers of M
equidistant from the beginning and end of the development are interchanged by
reversing the system. Equation (59) becomes on multiplying up by M*M*, using (58)
and simplifying '

E—MM‘E/ + A{MB'—A/M—3B+2C+dA/dM} =0, . . . (61)

omitting the arguments M, 1/M of A, B, B/, &c., since no confusion can occur. -
Use now the second invariant relation

 dAJ/dM = 4B—4C—4cs (1-M3),
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(61) becomes
E—~MM‘E'+ A {B+M°B'—2C—A/M—4¢s (1-M*)} =0. . . . (62)

Now substitute from (60) for B+M?B’ the value

C+MC'+A/M,
and (61) leads to .
E-MME +A{MC'—C—4o(1-M)} =0 . . . . . (63)
For a single refracting surface, where E, E’ are identically zero, this must lead to

MC-C=4s(1-M%) . . . . . . . . . (IV)

a result which is easily verified from equation (32).
Now consider a system compounded of two systems. For the system direct, we
have

Oy = G+ MIC,
Similarly, for the system reversed, change C, into C';, C; into C’;, M, into 1/M,.

Cy = C+M,2C,
M132031 - 013 = M12 M32C,1 - M32CI + M32C,3 - 03
= M} (M,?C',—C,)+M}*C/,—C,

and using (IV) which we know to be true for a single refracting surface

M132031 —Cy = 4o [M:f (1 _Mlz) +1 _M32]
= 40 (1-M,7).

In other words (IV) will hold for the resultant system if' it holds for the components,
and therefore as in previous similar cases, it holds for any system.

We shall call (IV) the fourth invariant relation.

Equation (63) then shows that there exists a fifth invariant relation

E=MME. . .. ... . ... (m
or
E (M)/n,® = M°E/ (M~*)/n,",

go that E possesses a property similar to that of A, previously noticed, viz., if we
divide it by the square of the initial refractive index, the coeflicients of powers of M
equidistant from the beginning and end of the development in M are interchanged.
Equation (59) has therefore led us to two independent invariant relations.
On the other hand it will be found that (60) leads to no new relation. For if we
substitute into it for B'—(C’ and B—C in virtue of the second invariant relation, and
then use the third relation, it becomes an identity.


http://rsta.royalsocietypublishing.org/

N

a
A
1~
A B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

N
JA \
o \
A B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

SPHERICAL ABERRATION FOR A SYMMETRICAL OPTICAL SYSTEM. 59

It gives, however, on using (IV) to eliminate C’,
M°B+B=A/M+2C+4c (1-M%) . . . . . . . (64)

which is a convenient form for calculating B'.

If now A, B, C, E are known for any system, the corresponding quantities are
immediately obtainable for the reversed system, A/, B/, ¢/, E’ being given by
equations (I1I), (64), (IV) and (V) respectively.

This will generally halve the labour of calculations, if it is found desirable to
tabulate these constants for a complete set of lenses. It will then be sufficient to
start from the equi-convex lens and vary the curvatures in one sense only.

Incidentally we note also that the second invariant relation enables us to find C,
so soon as A and B are known, so that only A, B and E require to be calculated.

The aberration constants for a reversed system have a further important application
in the case of lenses. Consider a positive lens (fig. 4), the initial ray converging to
I, and the final ray to I, If now we interchange the full and dotted portions of the
initial and final rays in fig. 4, we obtain, since here the initial and final media are the

Fig. 4.

same, the case of a ray going through a lens in which the front and back character of
the two surfaces have been interchanged. In fact 7 and r, have been interchanged
and the sign of the thickness ¢, has been reversed. This leads to a negative lens, of
the same numerical power as the original positive lens, and with the same mean
curvature, but a negative thickness. Such a lens, of course, is not physically
realisable, although a part of it can be physically obtained by rotating the wedge
beyond the intersection V of the two surfaces.
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But, in the case of the ideally then lenses, where the thickness is zero, the ideally
thin positive and negative lenses, having the same mean curvature and numerical
power, correspond in this way.

Now I, and I, are also interchanged. If we consider I, as the initial pomt then we
are really considering a set of rays starting from I, in the last medium and travelling
backwards through the original positive lens. In other words, the aberration constants
for the corresponding negative lens are identical with those for the original positive
lens reversed, and the equations (III), (64), (IV) and (V) are applicable to calculate
them.

This, again, will greatly diminish the work of calculation. In the case of ideally
thin negative lenses, we see that A, B, C, E are directly obtained from the corre-
sponding thin positive lenses. In the case of thick negative lenses the corresponding
positive lens has a negative thickness. ”

Now for various reasons it will probably be convenient, in calculating A, B, C, E
for lenses, to express them in the form

A, = Aytc (dA/de),

&c., where ¢, the thickness, is small, as it usually is in practice, and A, refers to an
ideally thin lens. _

When the formulse are put in this form, it is perfectly simple to calculate A_, B_,,
&c., and then to obtain the corresponding results for the negative lens with a positive
thickness.

§ 11. Explicit Values of A, B, C, E for a Thick Lens (Tangent Formula).

For the purposes of numerical calculation and comparison with correct trigonometri-
cally found values, we have worked out explicitly the form of the expressions A, B,
C, E for a thick lens, when we use tan B, as the argument; the formule are
expressed in terms of the focal lengths of each surface and of the combination and the
thickness does not appear explicitly. The initial and final media being the same
n, =n, and we have written n = n,/n,.

The work of algebraic calculation has been straightforward but extremely heavy,
and we therefore omit it here entirely, the object being to publish the results for
reference, in case other workers desire to use them for tabulation purposes, but it is
hardly to be expected that designing opticians should work direct from the algebraic
expressions as they stand.

For the purpose of this section we shall write

A=A +AM+AM +AM+AM

B = B,+B,M+B,M?+ B,M®.

C = C,+C,M+C,M2

E = B+ EM + E M+ E,M? + EM* + EM? + EMe.
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The suffixes here have a different meaning to that which has been previously
ascribed to them, but no confusion is likely to arise on this account.

The values are as follows, f denoting the focal length of the lens, fi, f; the focal
lengths of the surfaces, so that

Si=nfln=1),  fi=—rf(n-1)

4 L 1 __fl'*'f:s 3 ( +1)?ﬁ¥f2_ 2 faf 2.f3 "fz
<</\: A°_2n"”(n—1)2_ 7 VAR Vi 2n (1+n+n°) i +n (n+1) }1
= __ 1 [ 4(fitfie f? £
%E A= 51Vl S, f +4(n+1) ﬁ—4n(1+n+n)ﬂ (n+1)]

o L [ _6(fitfa)es i 1
ig A2_2n2(n—1)4_ I f +6(n+1)f1f6+2n(1+n+n )f<f1 >]
O A, = A, with f; and f; interchanged
Ce A=Ay w e
0z 1 [_2f . of
Eg Bo= iy~ <ﬁ f) 2(n'—n+1) Fbn (= 1) e (o —n+1)]
@26 1 [ 6f'/1 1 f? 11\
25 b= il 7 ) o) S e ()
& _ 1 i ()f 1 1 .f;__ zf —7
Bz—‘_“‘——‘4n2(n_1) T <f f3>+6(n +n+1)f3 3n(n+1) 7 +3n* (n® L+1)]
B,= A,
Cy= B-3-14,
C,= B, —1A,
C,= B, +8—%A,
__ 3 | _(@=n+1) (i+f)F (n+1) O N —n+1 A )
B Sy 7 g
o _ S r’+3n°+n  2(nt +n2+1)fg f‘[ 2 (p—n,
<'<:;<;€ na{ jl + jl f szl (n+1) ( +l)f>1 }
< s
%E ) — f(n? n+1)j.13
= E — 3 _6(nP—n+1) (L) 4 (7l+1) f"'{ F6(1@2—n+1) nj;}
E 8 P8 (n—1) n' Sof?? nt .f:af ) Sit S
— S 4(nP+30°+n) | (n+1)'48 (n*+n>+1) /Al
;‘é’m n‘*{ FoSE + 7P + (n"f‘l) A
e Sl6n | 4(n+1)? (n*+1) | 2(n—1202+n+1)f,
£6. YRR 7 |
<0
8(’) __I jr2n(2n2+n+2) (n+1)4fa nfz
:E,g 1 7 + 73 }+ 7 (n+1)? k
o=

VOL. CCXXIL.—A., K
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_ 15 (WP =n+1) (/i +S) §n+1)2f1{ 10n 15(n2——n+1)+g@}"
8 (n"‘l)4 n* S St S S
_f{(j (n3+3n3+n)+ 12 (n*+7°+ 1)+ 4 (n+1)*
n’ NS Sifs
4(n+1)* +2(n*+n°+1) N (n3+3n2+n)fg}
f’]{} f'14
ff" {Gn N 6(n+1)* (n? +n+1) 8 (n+1)*(n*+n+1)
Sy Sifs Ji
(n+1) (n*+3n+1)f;
| ’ A |
{_4_@"_(1@4— 1)2+n3——n2+n+ 2 (n+1)'+2 (n+n+1) (n?+3n+1)
S Ji
2(n*+n+1) (n*+3n+1)f;
! s |
Js
i

—n® (n*+3n+ 1)?

+

S

+n{(n+1P +4 (nP+n+ 1)} + (n+1) (n®+8n+1)L2

3 | zo(n-—n+1)f(fl+fg) (n+1)? (100 /1 17
E3_8(n___1)4 ,}7/4 . f?ifs 7’2;4 f{f;.ﬂ<.ﬂ2+f32)

——Zni {4 (n®+3n? +n)<f1 }1;5>}8(n4+7%24}11}3+6(”+1)4 <_Jl;1+}13_>}
Zn—g—{z < >+4 (n+1)* \fl ) 12(’“‘1;(22%“)}
_f {27@ (n+1) f3> [(n+1)*

n 1

+4(n2+n+1) (n? +3n+1)]<ﬁ 71;,>}

+ 4n(n*+n+1) <§1 ?>+2 (n+1) (n?+3n+1)

a1 StS) Lo ifs
(n+1) 7 +2 yz

— 2nt

E, = E, with f; and f; interchanged.
E5 = El ’» ’ ’ bR
EG = EO ) 33 33 3
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It should be noted carefully that all the above refer to expressions in terms of the
tangent of the Gaussian inclination, this being the argument we have used in the
numerical work.

§12. Values of A, B, C, E for a Thin Lens.
When the lens is thin, we have the relation
R
| VA&
which enables the values of § 11 to be considerably simplified.
In this case it is useful to introduce a quantity K such that

K — mean curvabure of the lens _ f < 1 1>
= : =L (=+=].
power of the lens 2\r, 7y

When this is done the constants A, B, C, E take the following forms :—

A = —{(1=M)*/2n} {(n+2) [(1—M) K=(1+M) (n+1)/(n+2)]
+2° (L—=MP/4 (n—1)2—n? (1 +M)*/4 (n+2)}.

B=({1-MPK?* {n—1—(n+2) M}/2n+(1—M) K (1 + M +4M?) (n+1)/4n ‘
+(1=M) {M (1+M)/4n+(1—=M) [3n—2n*~3+M (6n—4n>—3)|/8 (n—1)}.

C=-3(1-MyPK*2n+3(1-M?) K (n+1)/4n—% (1 -M*)—§n (1 =M)*/(n—1)~

g 3 (1=M)* | (1+M*) (—4n°+8n*—n~4n*+3n—1)
128 (n—1)"n"l M (14 M) (800 — 160+ dn* + 4P — 1207+ 120 —4)
+ M2 (— 160"+ 32n°—8n°—8nt+ 10n*— 160+ 18n—6)
+8 (n—1) (1—-M) (1+M) K {(1+M)?
: (—2n°+5n*—20°—3n’+ 8n—1)
+M (2n°—8n*+4n® + 2n?)}
+8 (n—12 (1-M)* K2 {{1+M)? '
(=24 80t —TnP—6n*+ 9n—3)
—2M n? (n?—2n—1)}
+16 (n—1)* (1+M) (1-M)* K? {2n*—4n°—2n*+ 6n—2}
+16 (n—1)* (1=M)* K* (—n*+3n—1)

We notice that when M = 1 (which gives one of the zeros of A) B, C and E all
vanish with it, and also E/A remains finite. Hence in this case, the term F¢! will
not rise in importance, even when A = 0. But in this case A may have two other
real zeros, and these are not zeros of E, so that E plays an important part in the
neighbourhood of such zeros.

K 2
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§ 18. Numerical Test for a Single Lens.

To test the formulse, a number of longitudinal aberrations were calculated trigono-
metrically for five positive lenses of refractive index 1'52, unit focal length and
thickness s. The first was a meniscus-shaped lens for which 7, = 0°349418, r, = 1.

The second was a plano-convex lens, of which the convex side is towards the
incoming light. The third was an equi-convex lens. The fourth and fifth were the
second and first reversed. If K has the meaning defined in § 12, the values of K for
these five lenses are 1983094, 0°96154, 0, —0'96154 and — 1°93094 respectively, so
that they proceed by approximately equal steps of K.

The constants A, B, E were calculated for these five lenses and the longitudinal
aberrations computed from the formula. The rays selected met the first principal
plane at a distance 015 from the axis, corresponding to an aperture f/8'4, nearly.

The results are shown in Table IT1.

TaBLE ITl.—Longitudinal Aberrations of Five Selected Lenses.

)
A

A \

,,
Y,

S

a

THE ROYAL
SOCIETY

Lens 1. Lens 2. Lens 3.
M. ‘ Per- Per- Per-
rormula.. | True. |centage| Formula. True. |centage| Formula. True. |centage
| error. error. error.
3 —7-98683 |-7-87422 | 1-41 |-1-12450 |-1:12814 | 0:32 |-0-32378 —-0-32439 | 0-19
2 —1-55287 | —1-52334 | 1:94 |-0-40167 |-0-40283 | 029 |-0-14240  -0-14282 | 0-29
05 |-0-003527 —0-003530, 0-09 |-0-011697 —0-011705/ 0-07 |-0-033008 ~0-033096 0-27
0 —0-06028 | -0-06043 | 0-24 |—0-024728/-0-024749 0-08 |—0-036194/—-0-036213 0-05
—-0'5 [-0°20902 '—0-20946 | 0-21 |-0-083863 —0-083950 0-10 |—0°-057067 —0-057101| 0-06
-1 —0-42692 —0-42772 | 0-19 |-0-18428 |-0-18448 | 0-11 |-0-094736—0-094787 0-05
—-1-00383 |-1-00531 | 0-15 |-0-48874 |-0-48930 | 0-12 |-0-21707 -0-21724 | 0-08
Lens 4. Lens 5.
Formula. True. Percentage Formula. True. Percentage

error. error.

-3 — 0098969 - 0099086 0-12 —0-10401 ~0-10444 0-41

2 — 0046089 —-0-046128 0-30 -0°-013671 -0-013686 0-11

0 —0-073959 —0-074535 0-77 —0-14762 —0-15068 2-03

0 —0-099843 — 0100044 0-20 -0-22172 - 022324 0-68

-0-5 -0-13967 —-0-13984 0-12 —0-32828 -0°32966 0-42

- 019084 -0-19101 0-09 —-0-45753 —0-45887 0-29

—0-32454 —0-32476 0-07 —0-77417 -0-77511 0-12

PHILOSOPHICAL
TRANSACTIONS
OF

The mean percentage error of these results is 0°34, so that the formula determines,
on the average, the longitudinal aberration correct to 1 part in 300.

The bulk of
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this, however, is contributed by three cases, namely: M = 3 and 2 for lens 1 where
the aberrations are very large and differ very widely from the usual first and second
order approximations, so that, although the error of the formula approaches 2 per cent.,
it nevertheless represents a great improvement upon these approximations; and
M = 0°5 for lens 5, which corresponds to extreme curvature and highest inclination,
so that one of the angles of refraction is as great as 48% degrees. Hven here the
table below shows that the formula is an appreciable improvement on the usual
second-order approximation. If these three cases are omitted, the mean percentage
error works out to be about 021, so that in general the formula determines the
longitudinal aberration correct to about 1 part in 500.

It is interesting to note what the usual first and second order approximations lead
to in a few cases.

OF
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First order Percentage Second order Percentage
approximation. error. approximation. error.
Lens 1, M =3 . —-1-34012 83-0 - 2°45432 68-8
» LM=2 . —0°48545 68-1 - 082104 46-1
w L M= -2, —1-348142 34-1 ~0°88456 120
w 2, M=3 . -0-67356 403 —-0-94436 16-3
w 5, M =05. ~0-12136 19-5 ~0-14307 5-1

This gives a measure of the numerical improvement effected by the fractional formula
whenever the usual method of approximation is seriously out, even though in none of
the cases above does the convergency of the series actually fail.

In the above the series are in powers of tan 8,, Had they been taken in powers of
tan «, as is frequently done, the first and second order approximations would have
been far worse. _

One interesting outcome of these calculations relates to the relative importance of
the terms in Et,* and At’. The ratio E¢fA is small in every case taken (of course
these exclude the neighbourhood of points where A = 0, where naturally I becomes
of great importance). But for the set of magnifications taken, the greatest ratio of
the second term to the first is less than 003 and the mean value of this ratio is only
0'0082, so that, in fact, the E term—although so comphcated algebraically—does not
exercise any great influence numerically.

This is important, as it shows that, at any rate for lenses, it does not require to be
computed with anything like the same order of accuracy which is needed for A and B.

§ 14. The Singular Inclination and Convergency Factor for any System.

Referring again to fig. 2 we see that A = a, and F,I, = — Az, for rays proceeding
through the system reversed and initially parallel.
Thus using accents, as before, to denote the coefficients and inclinations for
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the system reversed, and noting that the accented coefficients all refer to zero
magnification, we have, using tangents

tan A = tan 8, (1+ B, tan® 8,)/(1 +C, tan® §,)
and

—F,I, = fn, (A, tan? B, + F/, tan* 8,)/(1 + B, tan? 8’,).

Here the suffixes in the A, B, C, &c., A/, B, (', &c., have the same meaning as
in §11.
Thus
- 1/ M= (A,O tan® B, + ¥, tan* 8,)/(1+ B, tan® 8,),

whence, developing cot® B, in descending powers of M and stopping at the second
term

cot’ B, = — A/, M-B/ +E /A,
Substituting into
cot? A = cot? 3,42 (C',—B,)

which is valid to the same order of approximation, we obtain
cot? A = —A/ M+2(C,—B,) =B, +E\ /A, . . . . . (67)

as the second approximation for the singular inclination when M is large, the first
approximation being cot’ A = — A’ M.
To the same order the convergency factor is

1+ tan® e, (A, M+{2 (B,—C",) +B,— (E,JA")}),
1.e.,

1+ (n? tan? Byfny?) (A M4 (3B, —2C/—E,JAZ) M2, . . . . (68)

B, referring to a ray passing through the system in the standard sense.
Now, using the equations (III), (64), (IV) and (V) of §10 and equating suitable
coefficients, we find that

A = (noz/ nzz) A, E, = (73'04/ n24) E,,

¢, = (nny’) Cy—4o, B, = (nfny?) (A;+2C,—B,) —4o
3A, = 4B,—4C,+4 (n?fn?) o, A, =B,

whence, after substitution, (68) becomes
1+ tan? B, (B.M2+{B,—E/A I M?).. . . . . . . (69)

Now, if our B leads to a sound approximation to the convergency factor for M large,
this should be
1+ B tan® 8,
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or, to the same approximation which we have been using
l+tan?B, (BM*+BM?). . . . . . . . . (70)

We see, therefore, that the development of the correct convergency factor in descending
powers of M will give a result which always agrees with our B, so far as the highest
term in M 1s concerned, but makes the term in M? in general different.

In the case of a lens Ey /A, is in general small, compared with B,, so that this
discrepancy makes little difference, but it may well be that, when we come to deal
‘with more complicated systems, this will not be the case.

A little consideration, however, shows that, when this is so, our formula is very
readily corrected so as to take this difficulty into account, without involving any
lengthy numerical computation.

If we consider the formula

Az, = ny,f {At?+ (E—AEMA,) ¢4 /{1+ (B=EM?*/A,) ¢t}

it is clear that it leaves the development of Aw, in powers of ¢, unaltered as far as
the second order inclusive. It alters the coefficient B, of B so as to make the two
leading terms agree with (69). It also alters E in such a way as to remove the term
in M* and reduce E to a quintic. In fact it gives for the new E the remainder obtained
after the first step in the division of E by A, according to the usual process.
In practice, the terms in (E,/A,) M? are very readily added as follows :—
At + Bt [(1-E,M?%,2[A))

A =/ TR —EM/A,)

and this amounts to applying the same corrective factor 1/(1—EM?%2/A,) or
1/(1=Ent?[n,?A,) to the second terms in both numerator and denominator. This
factor, expressed in terms of the inclination of the incident ray, is independent of the
magnification, and a short table will enable it to be found in any given case without
difficulty.

A similar correction has then to be made in C; in order to keep the development
of tan a, the same we must have

tan oy = t, {1 + (B_EGM2/A4) t22} / {1 + (C"‘EGMz/A-4) t22},

and writing this as
ts { 1+ Bt22/ Q—‘ Esttzz/ A4)}
1+Ce2 (1 —EM2t,2[A,)

we see that the same corrective factor has to be applied to all the second terms in the
formulze. ‘

In the above we have used tan 8, as our argument, but the formule and the
correction take precisely the same form if sin v, is the argument.
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If we apply this corrective factor to the first two entries of Table I11., which give
a large percentage error—these correspond to cases approaching the failure of

convergency and are therefore critical, we find, for lens (1)

M True Formula Percentage Formula Percentage
: aberration. uncorrected. error. corrected. error.

3 ~T7-87422 ~ 798683 1-41 - 790811 0-43

2 - 152334 —~1-55287 194 ~ 154089 1-16
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which shows a very sensible improvement.

The significance of this alteration is brought out more clearly when we consider
the limiting case M = o that is, rays actually issuing from the front focus (the
case of an eye-piece). In this case, the geometrical image being at infinity, it is
inconvenient to define the emergent ray by means of either longitudinal or transverse
aberrations. :

Let us consider the intercept of the ray on the back focal plane.

This = (—nsf M+ A,) tan a,

= nof [ (A tan® B,+e tan B,)/(1+0 tan® 8,) —M] tan a,.
Also
tan o, = (tan o,/M) (1+0M~2tan? a,)/(1+cM~2 tan® a,),
where

b=B-EM/A, c¢=C-EM/A, c¢=TE-EAMYA,

and it is clear that, in the limit, where M (and M) = o, tan a, must be finite.
This requires that b and ¢ shall be of order M? and M? respectively, which is right, -

and leads to
tan oy = nb, tan® ayfn (14c, tan® o),

b; and ¢, being the coeflicients of M? and M? in b and ¢ respectively.
On the other hand, it is equally obvious that the intercept on the back focal plane
must also approach a definite limit. Hence the factor

. (A tan® B,+e tan* B8,)/(1+b tan? B,)—M,
v.e.,
—14(A—Mb)tan? B,/M +e tan'B,/M
1/M 4+ b tan? 8,/M ’

or
—1+(A—Mb) tan? a,/MM?+ ¢ tan* o, /MM
1/M +b tan? o,/ MM*

must tend to a finite limit as M approaches oo.
This necessarily involves that (1) A—Mb has M? in its leading term—a result
already established, and (2) that e involves M® (and not M’) in its leading term.
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Hence, whenever we deal with incident rays actually passing through the front
focus—and this necessarily occurs as soon as the results of the present paper are
applied to aberrations off the axis—the modified B, C and E have to be used.

§ 15. Combenation Formule for More than Two Systems.

The combination formule (47), (48), (51) are capable of explicit generalisation for
any number of systems.

In the case of A and C successive applications of equations (47) and (51) lead at
once to the results ‘

SissomarB s s = (S1Ay) L |
+(f3A3) M3 M et .

+ (./.2n-1A2n—1) M22n+1M22n+1 +j;n+1A2n+l LI (71)

C135 ongl T 01M235... on+41 + 03M25,,,2n+1 +...
+C2n-—1M22n+l+C2n+l' . . . . . . . (72)

in which we have reverted to the notation of §§ 2, 7.
In the case of B, we have for three systems

B135 = B35 + B1M352 + A1M35M352f1/.f:35
= B;+ B,M,* + B,M;> +( flAl) M35M352Zf35 + (f%Aa) M5M52/f’»

and the general law of combination is at once obvious.
We have

Buisg.omsr = By oy + Bl i+ oo + By M2, + By
+(AAL) (MM2f Y5 pnr+ (SoAs) (Mlef )soznart e +(f:zn51A2n_1) (MM?/f )01 (78)

The case of E is more difficult and we have not been able to obtain a form in which
it can be written down for the combination of n systems. ‘

But we can deal with it as follows, by determining the contribution of any one
component to the whole :(— ‘

Consider three systems 1, 3, 5. It will be convenient to look upon 3 as a single
lens, forming part of a larger system. 1 will then be the system of lenses preceding 3,
and 5 the system following.

Applying equation (49), simplified by the use of the second invariant relation, we
find

f135E135 = f:sEz» +f13E13M52M54
+f13A13M52M52 (3A5/ M5 - 3B5 + 405 +4o { 1- Msz} )

+ 3B, fLAM?—2C,, fLA M2
VOL. CCXXL—A. L
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Applying the equations of combination a second time, and picking out.the terms
involving A,, B;, C,, E,, we find these to be '

SoBs MM+ MM [ A A M M? (3A,/M,—3B,+4C,) +£:A,M;? (3B,—2C))]
+5AMEM? [3A/M;—3B;+ 4C;+ 4o (1-M7)]
+3B, f;AM.2—2C, f, A ;M2

Hence the lens 3 contributes to the final E

Fl MM [A, + (fi[Fs) A MM+ 4o (1—ML?) ML2M,?
+ M/ M,?[ -8B, +4C,+(3B,—2C,) M%, ]}
+B,M; (3 f3A,—3fi A M*M,.°)
+CM2 (=2 A, +4f, A MM,
G AEMAM,

and the A’s, B's and C’s in the curled brackets can be expressed in terms of the
individual lenses of the system by means of equations (71), (72), (73).

If we denote the coefficients of A, B, C., E, in the above by I, ms, ps, qs, then the
contribution of the individual lens to E

= [,A;+m,B, +29303 + q:zEs‘

Hence, if we vary K, for this lens, keeping focal length and magnifications
unaltered
AE = AK, (1, 0A,/oK,+m, 0B.JoK, + p; 0C,f0K;+ ¢, 0E,0K,).

If all the lenses are simultaneously varied, then we have
AE = 3 AK (I 0A /0K +m 0B/oK +p 0C[oK + q 0E[0K).

‘We have similar equations for AA, AB, AC, but they take a much simpler form.

Using these, we can, if we have enough lenses, vary the K’s so that, between limits,
we can make our four constants A, B, C, E take up any assigned values, or, if we
wish to keep any one constant whilst slightly varying the others, we have a linear
relation between the AK’s.

§16. Conclusion.

We have now established a formula of fractional type for the longitudinal aberration
of a symmetrical system which, while algebraically correct as far as the second order,
does in fact, give results beyond this order in those numerical cases which have been
tried, and largely overcomes the difficulties of slow convergency in critical regions.
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We have further obtained a method for calculating the coeflicients of this formula
for any symmetrical optical system in terms of the coefficients for the components,
in such a way that the effect of any single component upon the whole combination is
immediately obtained. ,

In considering the convergency of the series usually employed, we have found that
the value of the approximation depends upon the particular variable employed, and
that if we wish to avoid trouble owing to lack of convergency we must use sin «, or
tan e, (or a suitable multiple of these) as argument, where «, is the inclination of the
original incident ray.

The numerical success of the new formula appears to suggest that progress in the
algebraic treatment of symmetrical instruments is to be sought, not so much along
the lines of developments in series, but in other mathematical directions such as
continued products, or possibly continued fractions.

The next step would be to develop the ‘method so as to cover the second order
approximations to the emergent inclination. This will enable us to deal with aberra-
tions off the axis of the system. A

Some progress has already been made by the authors in this direction.and the
results will, it is hoped, form the subject of a later communication.
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